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We are exploring various applications of elastic nonlinearity to a number of problems involving
interfaces. The aim of this study is to evaluate the sensitivity of Nonlinear Resonance Ultrasound
Spectroscopy (NRUS) to torque changes that are reflected in an evolving interface. Our system is
comprised of a bolt progressively tightened in an aluminium plate. This apparently simple system is
surprisingly complex. Different modes of the system, identified using Finite Element Modelling, are
studied in the range 1-25 kHz. These modes mostly correspond to bending modes of the plate. For
each mode, nonlinear parameters expressing the importance of resonance frequency and damping
variations are extracted. Linear and nonlinear parameters are then compared and their sensitivity
is discussed. In addition, the influence of the mode type on the sensitivity of nonlinear parameters
is discussed. Results suggest that a multimodal NRUS measurement can be an appropriate and
sensitive method for monitoring bolt tightening. Further work must be carried out to apply this
method in medical or industrial contexts.
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I. INTRODUCTION

A portion of our work is aimed at exploring the appli-
cation of elastic nonlinear methods to probe the physics
of interfaces, and to study potential applications. In
this work we focus in a problem that appears simple on
the surface, the tightening of a screw or bolt in a metal
plate– but turns out to be highly complex. Widely used
in many industrial applications, bolted structures have
been a research domain for many years, from concep-
tion of these structures to conception of quality control
devices of tightening. In the latter domain, ultrasonic
methods occupy an important position. Several publica-
tions appeared in the 70s using the variation of the first
compressional resonance mode of the screw to determine
the tightening forces on it, either in the time domain or
in the frequency domain1–4. In the time domain, a pulse
echo system allows to measure the time of flight of a lon-
gitudinal wave within the screw. Variation of wave speed
gives information on the tightening forces (acoustoelastic
effect)2,4.
At present, a number of research groups have improved
upon this measurement. A real time control of tighten-
ing has been developped by Nassar et al.5, based on the
time domain measurement. Similarly, Chaki et al.6 devel-
opped a system combining longitudinal and transversal
waves (termed the bi-wave method) to avoid systematic
calibrations in industrial applications.
Furthermore, many studies have been performed to de-
tect loosening of rivets, widely used in aeronautics. For

example, the combination of thermography and ultra-
sound techniques enables Zweschper et al. to detect
flawed rivets7,8. The structure is excited by ultra-
sound, which causes heating of flawed rivets by dissi-
pation. Then, thermography is used to detect heated
areas. More generally, methods using Eddy Current9–11,
X-Radiography12,13, or Magneto-Optic interactions14,15
are also either in progress or already employed for riv-
eted structures.
In medical domain, Meredith et al. developped the RFA
method (Resonance Frequency Analysis)16 in 1996 to as-
sess the stability of a dental implant. A L-shape sensor
is fixed to the dental implant after surgery to monitor
bone healing. Indeed, the first bending resonance of the
‘sensor-implant’ system is sensitive to stress exerced by
bone surrounding the implant. Similarly, the Periotest©

device developped by Dhoedt et al.17 in 1985 consists in
damping measurements of the implant/bone system by
means of a calibrated impact.
Little work has been done in nonlinear acoustics on this
subject. Very recent publications18,19 reported the sum-
frequency level (f1 +f2) created by exciting bolted joints
with two sinusoidal waves (f1 and f2), for different torque
levels. More generally, nonlinear acoustics offers some
sensitive techniques to detect an isolated and localized
micro-crack20, as well as to evaluate a global level of
micro-damage in materials such as rock21,22, nickel23,
concrete24–26, wood27, bone28,29, etc. These techniques
are mainly based on harmonic generation30–32, frequency
mixing33–35, acoustoelasticity36,37 or shift of the reso-
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nance frequency26,28,38,39. The latter, termed Nonlin-
ear Resonance Ultrasound Spectroscopy (NRUS), pro-
vides the means to extract nonlinear elastic and dissipa-
tive parameters, associated to changes in the resonance
frequency and damping with level of excitation, respec-
tively.
The aim of this study is to evaluate the sensitivity of
NRUS to torque changes, in a system composed of a
screw tightened in a plate. As nonlinear methods are
generally more sensitive than linear ones (velocity and
attenuation measurements), we expect to obtain comple-
mentary information and/or better sensitivity from these
measurements.

II. THEORY

In the framework of linear elasticity, stress and strain
are linearly related by a constant elastic modulus. If non-
linearity has to be considered, the Landau theory40 al-
lows to describe ‘classical’ materials, where nonlinearity
arises from atomic scale (nanoscopic scale). In case of
more complex materials, either heterogeneous, cracked,
or granular (mesoscopic scales), and for strain above
roughly 10−6 41,42, the Landau theory is not valid any-
more43,44. Indeed, some typical behaviours appear in
this case: an hysteresis with cusps is present in the
stress-strain response, odd harmonics are favored, res-
onance frequency exhibits a linear shift with level of ex-
citation38, and a slow dynamic phenomenon appears45,46.
The physical origins of these phenomena, which are still
not completely understood, comes from a rearrangement
of grains (dislocations, rupture, recovery bonds) which
can be modeled as friction and/or clapping, together
with a thermoelastic effect47. The ‘hysteretic’ regime
(except slow dynamics effect) of these materials has been
modeled phenomenologically by Guyer and McCall48, us-
ing the Preisach-Mayergoyz Space (PM Space). In this
model, materials are decomposed in hysteretic mesocopic
units (HMU), which alternatively open and close at dif-
ferent pressure values. Equation 1 describing the non-
linear elastic modulus K in a one dimensional case can
be derived from this model in the case of small acous-
tic strain, where a nonlinear nonclassical (or hysteretic)
parameter α has been added to the nonlinear classical
development of Landau (parameters β and δ of first and
second order representing the quadratic and cubic non-
linearities respectively) :

K (ε, ε̇) = K0

[
1− βε− δε2 − . . .− α (∆ε+ sign (ε̇) ε)

]
(1)

where K0, ε, ε̇ and ∆ε are the linear modulus, the strain,
the time derivative of strain and the maximum strain ex-
cursion over a wave cycle, respectively. As the interface
studied (threads) is at a mesoscopic scale, we expect to
obtain a nonlinear hysteretic behaviour, where the pa-
rameter α dominates over δ. In this case, a first order
approximation gives the equations 2 and 349. Equation 2
leads to the nonlinear elastic parameter αf (shift of the
resonance frequency), whereas equation 3 leads to the

FIG. 1: Aluminum plate used in the experiment. A M4-screw
is tightened in the upper left. Two piezoelectric sensors are
bonded to the plate.

nonlinear dissipative parameter αξ (damping variation):

f − f0
f0

= αf ε (2)

1
Q
− 1
Q0

= 2ξ − 2ξ0 = 2ξ0

(
V ε0
V0ε
− 1
)

= αξε (3)

where f , ξ, V and Q are the resonance frequency, the
modal damping ratio, the voltage amplitude of exci-
tation and the quality factor, respectively. The sub-
script ”0” refers to the value obtained with the lowest
amplitude of excitation (considered as a linear regime
value). αf and αξ are both proportional to the param-
eter α of equation 1. Equation 3 makes the assumption
that strain is inversely proportional to the modal damp-
ing ratio49. This allows one to extract αξ without mea-
suring ξ, an arduous problem in the frequency domain
with a nonlinear regime.

III. MATERIAL AND METHODS

A. Material

Our system (fig. 1) is composed of a steel screw
(M4, 16 mm-long) tightened at different torques (range
15-150 N.cm) in the corner of an aluminum plate
(10 × 10 cm2), using two dynamometric screwdrivers.
The first screwdriver (Facom A.301MT) is used for
torques between 15 and 75 N.cm, the second one (Fa-
com A.402) is used for higher torques. Below 15 N.cm,
the screw can be loosened by hand. We tighten until
150 N.cm, a value close to the maximum permissible
value for this screw diameter (250 N.cm typically). The
system is suspended by a string to obtain free boundary
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Mode 1 Mode 2 Mode 3 Mode 4

Mode 5 Mode 6 Mode 7 Mode 8

Mode 9 Mode 10 Mode 11 Mode 12

Mode 13 Mode 14 Mode 15 Mode 16

Mode 18 Mode 19 Mode 20 Mode 21

FIG. 2: Eigenmodes obtained by finite element modelling. The position of the screw is shown by the circle for mode 1. Color
scale indicates the displacement field: blue zones (or dark on black and white versions) represent a zero displacement (or a
maximum strain), and red zones (white zones and black and white versions) represent a maximum displacement (or a zero
strain). Corresponding frequencies are shown on table I. Note that these modes mainly correspond to bending modes of the
plate except modes n°16 and 19, which correspond to in-plane modes. Note also the absence of modes n°17 and 22, only present
in the experiment.
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n°

fexp
(Hz)

fmod
(Hz)

|fmod − fexp|
(Hz)

|fmod−fexp|
fexp

(%)

Qexp
(.)

1 1846 1852 6 0.3 600
2 3447 3421 26 0.8 280
3 4665 4707 42 0.9 380
4 4832 4869 37 0.8 140
5 8140 8202 62 0.8 230
6 8373 8375 2 0.0 200
7 8567 8682 115 1.3 130
8 9369 9529 160 1.7 300
9 10330 10322 8 0.1 180
10 13800 13958 158 1.1 140
11 14010 14217 207 1.5 410
12 15600 15850 250 1.6 300
13 16040 16137 97 0.6 95
14 17300 17499 199 1.1 320
15 17450 17752 302 1.7 425

16
not

excited
18402

not
excited

17 19120
not

detected
90

18 19380 19570 190 1.0 500

19
not

excited
20319

not
excited

20 20790 20880 90 0.4 380
21 21460 21459 1 0.0 290

22 23800
not

detected
100

TABLE I: Comparison between experiment (fexp) and finite
element modelling (fmod). The quality factor Qexp is also
given as information. All modes are identified except two
(n°17 and 22), because of model’s lacunae (cf text). Note
also that two in-plane modes are obtained by FEM, but not
excited in the configuration of the experiment (modes n°16
and 19).

conditions. Two piezoelectric sensors (PZT-5A, 12 mm
diameter, 2 mm-thick) are bonded on the plate with
glue, one is used as an emitter, the other as a receiver.
The excitation is provided by a 14-bit waveform gen-
erator (Spectrum M2i6012) fed into a Tegam 2350
amplifier. The acquisition is performed applying a 14-bit
Spectrum M2i4022 card.

B. Identification by FEM

The frequency range studied is 1-25 kHz. Beyond
25 kHz, density of modes is so great that they over-
lap and it becomes difficult to perform NRUS measure-
ment on an isolated mode. These modes are identi-
fied with a Finite Element Model, using an eigenmode
study (Comsol software). In this model, all geometri-
cal characteristics are respected, except thread which is
not represented. We model the contact plate/screw and
plate/sensors as perfect (same displacement). Elastic

FIG. 3: Spectrum at 150N.cm in the range 1-25kHz. Each
number corresponds to a mode in figure 2 and tables I and II.

characteristics included in the model for the aluminium
plate, the steel screw and the PZT sensors are 70 GPa,
900 GPa and 70 GPa, respectively for the Young Modu-
lus E, 2700 kg/m3, 7850 kg/m3 and 7750 kg/m3, respec-
tively for the density ρ. These values are typical from the
literature and have not been matched to fit the experi-
mental resonance frequencies. Moreover, the model does
not include dissipative charateristics. Then, numerically
obtained eigenfrequencies are compared to experimental
ones, measured for the maximum torque (150N.cm in
our case). Eigenmodes present in the range 1-25 kHz
mainly correspond to bending modes of the plate (fig-
ure 2). These bending modes become more and more
complex when frequency increases. Modes n°16 and 19
correspond to modes whose displacement field locates in
the plane of the plate. These two modes are not present
experimentally, as excitation favors out of plane modes.
In table I, we note that identification by FEM is efficient,
regarding absolute and relative differences between ex-
periment (figure 3) and modelling. However, two modes
present experimentally at 19.1 kHz and 23.8 kHz are not
identified in the modelling (modes n°17 and 22 in table I).
This poor identification can be explained by the fact that
thread is not modeled at the interface screw/plate.

C. NRUS measurement

Each mode with linear resonance frequency f0 is ex-
cited by a 1 s-long linear frequency sweep, whose start-
ing and stopping frequencies correspond to f0±5%. The
frequency sweep is then repeated for 30 increasing ampli-
tudes of excitation. The linear parameters f0 and ξ0 are
measured by fitting a lorentzian49 to the resonance curve
obtained for the lowest amplitude (considered as linear



5

FIG. 4: Mode n°11 for 30 increasing amplitudes of excitation
and 7 torques from 15 N.cm to 150 N.cm.

elastic). Resonance curves at higher amplitudes are fit-
ted by a polynomial interpolation, allowing to extract the
resonance frequency f and the corresponding amplitude.
Finally, nonlinear elastic and dissipative parameters αf
and αξ are extracted for each mode, according to equa-
tions 2 and 3. This procedure is then repeated for in-
creasing torques.
Experiments are performed in a temperature controlled
room (25 ± 1 �). The duration time of 1 s for the fre-
quency sweep has been chosen as a compromise between
the possible heating of the system and achieving a steady-
state at each frequency during the sweep. The character-
istic time τ = Q/(πf0), corresponding to 63 % of the ex-
ponential decrease of a free oscillator (with Q the quality
factor of the mode) is in the worst configuration 10 times
lower than the time excitation (1 s), meaning that the
steady-state is reached at each frequency.
A waiting time between each excitation is needed to limit
slow dynamics phenomenon from fast dynamics (NRUS)
measurement. This waiting time was evaluated at the
lowest torque (the case where nonlinearity is the high-
est). The resonance frequency of each mode is first mea-
sured with the weakest amplitude of excitation. Then,
the system is excited with a 1 s-long excitation at the
highest amplitude used in the measurement. Just after,
the resonance frequency is measured again with the weak-
est amplitude. Therefore, it appears that approximately
10 s are needed for the system to recover its original res-
onance frequency. We make the assumption that this
characteristic time is the worst case (longest duration
slow dynamics) and therefore this rest time is applied
between each excitation.
Finally, the NRUS experiment is repeated three times
(with repositioning of the screw) and displayed error bars
represent 2 standard deviations.

(a)

(b)

FIG. 5: (a) Relative frequency shift |f − f0| /f0 of mode n°11
versus voltage amplitude of detector (proportional to strain)
for 28 increasing torques. Each curve is linearly fitted and
the slope obtained corresponds to the parameter Cαf with
C a constant. (b) Damping variation 2ξ − 2ξ0 of mode n°11
versus voltage amplitude of detector (proportional to strain)
for 28 increasing torques. Each curve is linearly fitted and
the slope obtained corresponds to the parameter Cαξ with C
a constant.

IV. RESULTS

Modes in the range 1 to 10 kHz (n°1 to 9) exhibit weak
nonlinearity and little sensitivity to torque changes.
Then, most of modes in the range 10-25 kHz exhibit
higher nonlinearities at low torques. As an example,
we can observe in figure 4 the typical behaviour of
mode n°11 for 30 amplitudes, and 7 torques from 15 to
150 N.cm. In this figure, we can observe qualitatively
that the higher the torque, the higher the resonance
frequency. Moreover, increasing torque leads to higher
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(a)

(b)

FIG. 6: (a) Nonlinear elastic parameter Cαf as a function
of torque for modes n°11 (∇),20 (�),21 (◦) and 22 (×), where
C is a constant. Mode n°11 is present in the spectrum over
the entire torque range, while modes 20, 21 and 22 appear at
torque 35, 24 and 35 N.cm respectively. (b) Zoom of (a) on
modes 20, 21 and 22.

amplitudes and lower damping. Finally, the frequency
shift decreases (the slope tends to be vertical). This
seems logical with our understanding of the system.
Indeed, as a first approximation, if we consider the
most elementary vibrational system (generally termed
mass-spring system), with a mass m and a stiffness
k, the resonance frequency of this system will be
f = 1

2π

√
k/m. In this system, f is proportional to

√
k

and that is what we observe when increasing torque:
stiffness increases for a same mass. Likewise, the contact
screw/plate is more and more stressed when increasing
torque. Thus, linear dissipation and elastic nonlinearity
are more present for low torques, as observed in figure 4,
where linear dissipation induces ‘broader’ modes and

(a)

(b)

FIG. 7: (a) Nonlinear dissipative parameter Cαξ as a function
of torque for modes n°11 (∇), 20 (�), 21 (◦) and 22 (×), where
C is a constant. Mode n°11 is present in the spectrum over
the entire torque range, while modes 20, 21 and 22 appear at
torque 35, 24 and 35 N.cm respectively. (b) Zoom of (a) on
modes 20, 21 and 22.

lower amplitudes and elastic nonlinearity induces higher
frequency shift with drive amplitude. Quantitatively,
these phenomena are represented from figures 5 to 9.
Figure 5, the relative frequency shift |f − f0| /f0 and
damping variation 2ξ − 2ξ0 are plotted versus voltage
amplitude received by the detector sensor. In this figure,
each curve is linearly fitted and the slope of each fit
corresponds to Cαf and Cαξ, with C a constant (the
amplitude in Volts is proportional to strain). This slope
decreases dramatically when torque increases, meaning
that the system tends toward a linear regime.
In figures 6 and 7, we can observe the behaviour of
nonlinear elastic and dissipative parameters respectively
for 4 modes. Mode n°11 is present in the spectrum
over the entire torque range, while modes 20, 21 and
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FIG. 8: Mode n°11. Evolution of linear (f0 in dashed line)
and nonlinear (-Cαf in bold line) elastic parameters vs torque.
The opposite value of Cαf is plotted to allow the sensitivity
comparison.

22 appear at torques about 35, 24 and 35 N.cm respec-
tively. Actually, these modes appear progressively in
the spectrum when increasing torque and below these
torque values, the signal to noise ratio is too weak to
perform a reliable measurement. Modes 20, 21 and 22,
appearing during tightening, can be considered as new
events in the spectrum and are very useful to follow.
Indeed, their sensitivity is great at the beginning of their
torque range. Thus, combination of modes allows one
to maintain sensitivity over the entire torque range. In
figures 6 and 7, we also notice that the mode 22 is much
more sensitive than others. It was not detected by FEM,
certainly due to a poor representation of thread in the
model.
Figure 8 compares linear and nonlinear elastic param-
eters for the mode n°11. It appears that nonlinear
elastic parameter is sensitive at the beginning of the
torque range (from 15 to 40 N.cm) while linear elastic
parameter is sensitive from 15 to 80 N.cm. However,
when the nonlinear parameter is sensitive, it is more
sensitive than linear one. Beyond the sensitivity level
of each parameter, the nonlinear parameter brings some
new information on the system, complementary to the
linear one. This point will be developed more in-depth
in the discussion part.
Finally, figure 9 displays normalized values of linear and
nonlinear elastic parameters for modes 11, 20, 21 and 22.
When sensitive, the nonlinear parameter of each mode
is more sensitive than its linear counterpart. Therefore,
the addition of modes implies that the nonlinear method
is more sensitive than the linear frequency change. An
equivalent comparison can be made between linear and
nonlinear dissipative parameters. The behaviour is
highly similar, even if modal damping ratio (linear pa-
rameter) is more artefacted by the presence of adjacent
modes.

FIG. 9: Normalized values from 0 to 100 for linear (f0 in
dashed line) and nonlinear (-Cαf in bold line) elastic parame-
ters of modes n°11 (∇), 20 (�), 21 (◦) and 22 (×). The opposite
value of Cαf is plotted to allow the sensitivity comparison.

Modes 12 and 15 are also sensitive to torque variations,
and exhibit a behaviour similar to the mode 11 (good
sensitivity between 15 and 40 N.cm). They are not
displayed here in order to keep a clear presentation of
results. Modes 10 and 13 exhibit a weak nonlinearity and
a little sensitivity to torque changes. Mode 14 has very
low energy (figure 3), so that the signal to noise ratio is
too weak to perform a consistent measurement. Finally,
modes 17 and 18 overlap at lowest torques (from 15 to
about 35 N.cm). A measurement is nevertheless possible
above 35 N.cm and exhibits good sensitivity to torque
changes.
In this study, it appears that sensitive modes have a
nodal line of displacement ”passing” over the screw (11,
12, 15, 18, 20, 21 and except 18) whereas insensitive
modes 10 and 13 do not. This nodal line corresponds
to a maximum strain, and it seems logical that this
maximum strain favors strong sensitivity. However,
modes at lower frequency, for example n°6 or 8, present
a similar nodal line but are not sensitive. We can
not answer clearly about this insensitivity but we can
speculate that they may be sensitive at torques lower
than 15 N.cm. These results are summed up in the
table II.

V. DISCUSSION

The main purpose of this study was to show that
nonlinear resonance ultrasound spectroscopy was sen-
sitive to tightening forces of an interface screw/plate.
We show that this nonlinear method provide a sensitive
parameter α. A comparison is made between linear
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n° Frequency Torque range Torque range of Torque range of Nodal line
(HZ) of existence (N.cm) sensitivity for αf (N.cm) sensitivity for αξ (N.cm) on the bolt

1 1846 15-150 very weak very weak no
2 3447 15-150 very weak very weak no
3 4665 15-150 very weak very weak no
4 4832 15-150 very weak very weak yes
5 8140 15-150 very weak very weak no
6 8373 15-150 very weak very weak yes
7 8567 15-150 very weak very weak no
8 9369 15-150 very weak very weak yes
9 10330 15-150 very weak very weak no
10 13800 15-150 very weak very weak no
11 14010 15-150 15-40 15-30 yes
12 15600 15-150 15-40 15-40 yes
13 16040 15-150 very weak very weak no
14 17300 15-150 very weak very weak no
15 17450 15-150 15-40 15-40 yes
16 not excited
17 19120 15-150 overlapping with 18 overlapping with 18 not detected
18 19380 15-150 overlapping with 17 overlapping with 17 no
19 not excited
20 20790 35-150 35-120 35-120 yes
21 21460 24-150 24-120 24-120 yes
22 23800 35-150 35-110 35-120 not detected

TABLE II: Summary of results obtained for each mode. Torque range of sensitivity for αf and αξ are displayed, as well as the
presence of a nodal line of displacement on the screw (corresponding to a maximum strain).

and nonlinear parameters. It appears that nonlinear
parameters are sensitive over a narrower torque range
but are more sensitive than linear parameters in this
range. Furthermore, by following several modes in the
spectrum and by analyzing modes which are not present
in the entire torque range, we are able to increase
the sensitivity range of the nonlinear approach. This
could be implemented in a future as a ‘nonlinear modal
analysis’.

A. Multimodal NRUS measurement

This study constitutes one of the rare systematic mul-
timodal NRUS measurement. Therefore, we remark on
several points. Each mode have to be isolated from adja-
cent ones to avoid artefacts in the analysis, especially for
dissipative parameters. Hence, modes at relatively low
frequency are generally the most suitable, as the mode
density is low. Moreover, the system geometry has to be
as asymmetric as possible, to avoid several eigenmodes
around the same frequency. We also observe that the
most suitable configuration to perform a measurement
occurs when emittor and detector are placed on a strain
node (or a maximum displacement), which favours
an energetic mode, while the source of nonlinearity
is placed on a displacement node (or a maximum
strain), which favours a sensitive mode. Also, when the
source of nonlinearity remains unknown, sensitivity or

insensitivity of different modes allows one to localize it39.

B. Measurement artefacts

We noted previously that for the highest torques,
slopes are slightly negative in figure 5(b), leading to
negative αξ values: they correspond to a transparency
effect50. Moreover, when performing the experiment
without the screw, the nonlinear dissipative parameter
is also slightly negative and with similar values. This
behaviour, which was not expected, could come from
electronic devices, bonding of piezoelectric sensors,
and/or geometric nonlinearity.

C. Physical modelling and nonlinearity origins

For lowest torques (figure 5), the evolution of the
relative frequency shift and damping variation of mode
n°11 does not seem to be linear but rather quadratic.
Thus, by fitting a second order polynomial on these
curves, it appears that a combination of δ and α
(cubic and hysteretic nonlinearities respectively) is more
appropriate, reflecting the coexistence of classical and
hysteretic regimes simultaneously. Nevertheless, a coarse
linear fit allows to compare a same parameter over the
entire torque range.
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Furthermore, this study points out a need for a model
to characterize the nonlinear behaviour of a screw/plate
interaction under acoustic wave excitation, and beyond
the PM space formalism presented in part II. The non-
linear behaviour of the system comes from the interface
between the screw and the plate. Indeed, and similarly
to rocks where grains (rigid system) are interconnected
with softer bondings, the interface screw/plate can be
considered as a soft object between two rigid objects
(screw and plate themselves). Then, nonlinearity level
will depend on static forces present at the interface, the
roughness of both surfaces, the presence of a liquid, etc.
This model would have to describe (1) the coexistence
of classical and hysteretic regimes at lower torques (2) a
decrease of both nonlinear parameters with increasing
torque until the linear regime, with a faster decrease for
the classical parameter.
As a starting point, asperities at the interface could
be modelled as micro-spheres in contact, and described
by a Hertzian nonlinearity. Indeed, this model could
describe the presence of classical regime at low torques.
This model allows one to describe the contact between
two unconsolidated spheres under normal forces, giving
a classical nonlinear elasticity51. Then, models derived
from the Hertz-Mindlin theory take into account both
normal and tangential forces and the possibility of a
stick/slip behaviour. The latter leads to a hysteretic
regime52 and could be efficient to describe a screw/plate
interaction at higher torques.

D. Strain level

The strain level applied by the acoustic wave to thread
remains unknown (nonlinear parameters obtained are
not αf and αξ, but Cαf Cαξ, with a constant C).
However, by using piezoelectric characteristics of sensors
used in the experiment, we are able to obtain an order
of magnitude for strain applied to the system. Indeed,
strain applied to the emittor is between 10−6 and 5.10−5

for the lowest and highest amplitudes of excitation
respectively, while the strain received by the detector is
between 5.10−9 and 10−7. This evaluation does not give
strain values received by the interface screw/plate, but
values of this order are speculated.

VI. CONCLUSIONS

The main purpose of this study was to show that non-
linear resonance ultrasound spectroscopy was sensitive to
tightening forces of an interface screw/plate. Nonlinear
parameters appear to be a useful tool to characterize a
thread interaction, complementary to linear ones. We
also show that a multimodal study allows to increase the
torque range of sensibility. The study will be carried on
in the future by both academic works and medical or
industrial applications.
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